(Non)measurability of *I*-Luzin sets joint work with Szymon Żeberski

Marcin Michalski

Wrocław University of Technology

Winter School in Abstract Analysis 2016, section Set Theory and Topology 30.01 - 06.02.2016, Hejnice We live in the Euclidean space \mathbb{R}^n and work with ZFC.

Definition

For each $A, B \subseteq \mathbb{R}^n$, $x \in \mathbb{R}^n$ we define:

$$\begin{array}{rcl} A+B & = & \{a+b: \ a\in A, b\in B\},\\ x+A & = & \{x\}+A, \end{array}$$

A B M A B M

We live in the Euclidean space \mathbb{R}^n and work with ZFC.

Definition

For each $A, B \subseteq \mathbb{R}^n$, $x \in \mathbb{R}^n$ we define:

$$A+B = \{a+b: a \in A, b \in B\},$$

$$x+A = \{x\}+A,$$

Let's denote a family of Borel sets by \mathcal{B} .

Definition

We say that a σ -ideal \mathcal{I} :

- is translation invariant if for each $x \in \mathbb{R}^n$ and $A \in \mathcal{I}$ we have $x + A \in \mathcal{I}$;
- has a Borel base if $(\forall I \in \mathcal{I})(\exists B \in \mathcal{B} \cap \mathcal{I})(I \subseteq B)$

We shall consider proper, containing all countable sets σ -ideals with a Borel base only.

We say that a set A is:

- \mathcal{I} -residual if A is a complement of some set $I \in \mathcal{I}$;
- *I*-positive Borel set if $A \in \mathcal{B} \setminus \mathcal{I}$;
- *I*-nonmeasurable if A doesn't belong to the σ-field σ(*B* ∪ *I*) generated by Borel sets and the σ-ideal *I*;
- completely *I*-nonmeasurable if A ∩ B is *I*-nonmeasurable for every *I*-positive Borel set B.

-

We say that a set A is:

- \mathcal{I} -residual if A is a complement of some set $I \in \mathcal{I}$;
- *I*-positive Borel set if $A \in \mathcal{B} \setminus \mathcal{I}$;
- *I*-nonmeasurable if A doesn't belong to the σ-field σ(*B* ∪ *I*) generated by Borel sets and the σ-ideal *I*;
- completely *I*-nonmeasurable if A ∩ B is *I*-nonmeasurable for every *I*-positive Borel set B.

Example

Bernstein sets are completely $\mathcal I\text{-nonmeasurable}$ with respect to any reasonable $\mathcal I.$

A = A = A

We say that a set A is an \mathcal{I} -Luzin set, if for each $I \in \mathcal{I}$ we have $|A \cap I| < |A|$. A is called a super \mathcal{I} -Luzin set, if A is an \mathcal{I} -Luzin set and for each \mathcal{I} -positive Borel set B we have $|A \cap B| = |A|$.

(B) < B)</p>

We say that a set A is an \mathcal{I} -Luzin set, if for each $I \in \mathcal{I}$ we have $|A \cap I| < |A|$. A is called a super \mathcal{I} -Luzin set, if A is an \mathcal{I} -Luzin set and for each \mathcal{I} -positive Borel set B we have $|A \cap B| = |A|$.

Example

For \mathcal{M} and \mathcal{N} σ -ideals of meager and null sets respectively we call a \mathcal{M} -Luzin set a generalized Luzin set and a \mathcal{N} -Luzin set a generalized Sierpiński set.

(B) < B)</p>

 \mathcal{I} has a Weaker Smital Property, if there exists a countable dense set D such that for each \mathcal{I} -positive Borel set A a set A + D is \mathcal{I} -residual. We say that the set D witnesses that \mathcal{I} has the Weaker Smital Property.

() <) <)
 () <)
 () <)
</p>

 \mathcal{I} has a Weaker Smital Property, if there exists a countable dense set D such that for each \mathcal{I} -positive Borel set A a set A + D is \mathcal{I} -residual. We say that the set D witnesses that \mathcal{I} has the Weaker Smital Property.

Definition

I has a Smital Property if A + D is I-residual for each I-positive Borel set A and each dense set D. I has a Steinhaus Property if for every I-positive Borel sets A and B a set A + B has nonempty interior.

< ∃ > < ∃ >

 \mathcal{I} has a Weaker Smital Property, if there exists a countable dense set D such that for each \mathcal{I} -positive Borel set A a set A + D is \mathcal{I} -residual. We say that the set D witnesses that \mathcal{I} has the Weaker Smital Property.

Definition

I has a Smital Property if A + D is I-residual for each I-positive Borel set A and each dense set D. I has a Steinhaus Property if for every I-positive Borel sets A and B a set A + B has nonempty interior.

Proposition

Steinhaus Property \Rightarrow Smital Property \Rightarrow Weaker Smital Property.

A B > A B >

Example

Classic examples of σ -ideals that have all of the stated properties are \mathcal{M} and \mathcal{N} . On the other hand a σ -ideal of meager null sets $\mathcal{M} \cap \mathcal{N}$ doesn't.

(B) < B)</p>

э

Example

Classic examples of σ -ideals that have all of the stated properties are \mathcal{M} and \mathcal{N} . On the other hand a σ -ideal of meager null sets $\mathcal{M} \cap \mathcal{N}$ doesn't.

Theorem

Let \mathcal{I} be a translation invariant σ -ideal possesing the Weaker Smital Property. Then every \mathcal{I} -Luzin set is \mathcal{I} – nonmeasurable.

* E > * E >

 $\mathcal{I}\text{-Luzin sets are } \mathcal{I}\text{-nonmeasurable} \Leftrightarrow \text{Every } \mathcal{I}\text{-positive Borel set } B \\ \text{contains a perfect subset from } \mathcal{I}.$

э

A B > A B >

 \mathcal{I} -Luzin sets are \mathcal{I} – nonmeasurable \Leftrightarrow Every \mathcal{I} -positive Borel set B contains a perfect subset from \mathcal{I} .

Proof.

 $\Leftarrow:$ By contradiction. Suppose that we have an $\mathcal I\text{-measurable}\ \mathcal I\text{-Luzin}$ set X.

() <) <)
 () <)
 () <)
</p>

 \mathcal{I} -Luzin sets are \mathcal{I} – nonmeasurable \Leftrightarrow Every \mathcal{I} -positive Borel set B contains a perfect subset from \mathcal{I} .

Proof.

 $\Leftarrow:$ By contradiction. Suppose that we have an $\mathcal I\text{-measurable}\ \mathcal I\text{-Luzin}$ set X.

•
$$X = B\Delta I, B \in \mathcal{B} \setminus \mathcal{I}, I \in \mathcal{I};$$

() <) <)
 () <)
 () <)
</p>

 \mathcal{I} -Luzin sets are \mathcal{I} – nonmeasurable \Leftrightarrow Every \mathcal{I} -positive Borel set B contains a perfect subset from \mathcal{I} .

Proof.

 $\Leftarrow:$ By contradiction. Suppose that we have an $\mathcal I\text{-measurable}\ \mathcal I\text{-Luzin}$ set X.

- $X = B\Delta I, B \in \mathcal{B} \setminus \mathcal{I}, I \in \mathcal{I};$
- Borel base: take $I \subseteq I' \in \mathcal{B} \cap \mathcal{I}$, then $B \setminus I' \subseteq X$;

(B) < B)</p>

 \mathcal{I} -Luzin sets are \mathcal{I} – nonmeasurable \Leftrightarrow Every \mathcal{I} -positive Borel set B contains a perfect subset from \mathcal{I} .

Proof.

 $\Leftarrow: \mathsf{By \ contradiction. \ Suppose \ that \ we \ have \ an \ \mathcal{I}\text{-measurable \ }\mathcal{I}\text{-Luzin \ set}} X.$

- $X = B\Delta I, B \in \mathcal{B} \setminus \mathcal{I}, I \in \mathcal{I};$
- Borel base: take $I \subseteq I' \in \mathcal{B} \cap \mathcal{I}$, then $B \setminus I' \subseteq X$;
- $B \setminus I'$ is \mathcal{I} -positive, so it contains some perfect set from \mathcal{I} against the assumption that X is an \mathcal{I} -Luzin set.

() <) <)
 () <)
 () <)
</p>

 \Rightarrow : Also by contradiction. Suppose that we have a Borel \mathcal{I} -positive set B without the mentioned property. We claim that B is itself an \mathcal{I} -Luzin set.

-

 \Rightarrow : Also by contradiction. Suppose that we have a Borel \mathcal{I} -positive set B without the mentioned property. We claim that B is itself an \mathcal{I} -Luzin set.

• If it's not, then there is $I \in \mathcal{I}$ for which $|B \cap I| = \mathfrak{c}$;

 \Rightarrow : Also by contradiction. Suppose that we have a Borel \mathcal{I} -positive set B without the mentioned property. We claim that B is itself an \mathcal{I} -Luzin set.

- If it's not, then there is $I \in \mathcal{I}$ for which $|B \cap I| = \mathfrak{c}$;
- Borel base: we may assume that *I* is Borel and thus *B* ∩ *I* is a Borel set from *I*;

 \Rightarrow : Also by contradiction. Suppose that we have a Borel \mathcal{I} -positive set B without the mentioned property. We claim that B is itself an \mathcal{I} -Luzin set.

- If it's not, then there is $I \in \mathcal{I}$ for which $|B \cap I| = \mathfrak{c}$;
- Borel base: we may assume that *I* is Borel and thus *B* ∩ *I* is a Borel set from *I*;
- By the Perfect Set Property B ∩ I (and so B alone) contains some perfect set P ∈ I, against the assumptions;

 \Rightarrow : Also by contradiction. Suppose that we have a Borel \mathcal{I} -positive set B without the mentioned property. We claim that B is itself an \mathcal{I} -Luzin set.

- If it's not, then there is $I \in \mathcal{I}$ for which $|B \cap I| = \mathfrak{c}$;
- Borel base: we may assume that *I* is Borel and thus *B* ∩ *I* is a Borel set from *I*;
- By the Perfect Set Property B ∩ I (and so B alone) contains some perfect set P ∈ I, against the assumptions;
- What means that B is a Borel \mathcal{I} -Luzin set.

If *I*-Luzin set exists then there exists an *I*-Luzin of regular cardinality.

白 と く ヨ と く ヨ と …

If *I*-Luzin set exists then there exists an *I*-Luzin of regular cardinality.

Theorem

Let's assume that σ -ideal \mathcal{I} has the Weaker Smital Property. Then if A is an \mathcal{I} -Luzin set of regular cardinality then D + A is a super \mathcal{I} -Luzin set (D witnesses the Weaker Smital Property).

A B M A B M

If *I*-Luzin set exists then there exists an *I*-Luzin of regular cardinality.

Theorem

Let's assume that σ -ideal \mathcal{I} has the Weaker Smital Property. Then if A is an \mathcal{I} -Luzin set of regular cardinality then D + A is a super \mathcal{I} -Luzin set (D witnesses the Weaker Smital Property).

Example

 \mathcal{N} and \mathcal{M} have the Weaker Smital Property. $\mathcal{N} \cap \mathcal{M}$ doesn't have the Weaker Smital Property but still \mathcal{I} -Luzin sets are \mathcal{I} -nonmeasurable. For σ -ideal of countable sets $[\mathbb{R}]^{\leq \omega}$ whole space \mathbb{R}^n is an \mathcal{I} -Luzin set.

→ ∃ → → ∃ →

Question

What conditions should a σ -ideal \mathcal{I} meet to allow transformation of \mathcal{I} -Luzin sets into super \mathcal{I} -Luzin sets?

э

(B)

Assume that $add(\mathcal{I}) = \mathfrak{c}$. Then there exists an \mathcal{I} -Luzin set X such that X + X is a Bernstein set.

御 と く ヨ と く ヨ と …

Assume that $add(\mathcal{I}) = \mathfrak{c}$. Then there exists an \mathcal{I} -Luzin set X such that X + X is a Bernstein set.

Corollary

Under right assumptions there exists a generalized Luzin (Sierpiński) set X such that X + X is a Bernstein set.

Assume that $add(\mathcal{I}) = \mathfrak{c}$. Then there exists an \mathcal{I} -Luzin set X such that X + X is a Bernstein set.

Corollary

Under right assumptions there exists a generalized Luzin (Sierpiński) set X such that X + X is a Bernstein set.

What about L + S, where L is a Luzin set and S is a Sierpiński set?

(신문) (문)

Theorem (Babinkostova, Scheepers, 2007)

Let L be a classic Luzin set and S be a classic Sierpiński. Then L + S is not a Bernstein set since it's Menger.

< ∃ > < ∃ >

-

Theorem (Babinkostova, Scheepers, 2007)

Let L be a classic Luzin set and S be a classic Sierpiński. Then L + S is not a Bernstein set since it's Menger.

Theorem (M.M., Szymon Żeberski)

Assume that c is a regular cardinal. Then L + S, where L is a generalized Luzin set and S is a generalized Sierpiński set, belongs to Marczewski ideal s_0 .

(B) < B)</p>

Theorem (Babinkostova, Scheepers, 2007)

Let L be a classic Luzin set and S be a classic Sierpiński. Then L + S is not a Bernstein set since it's Menger.

Theorem (M.M., Szymon Żeberski)

Assume that c is a regular cardinal. Then L + S, where L is a generalized Luzin set and S is a generalized Sierpiński set, belongs to Marczewski ideal s_0 .

Definition

Recall that a set $A \in s_0$ if

 $(\forall P\text{-perfect}) \ (\exists Q\text{-perfect}) \ (Q \subseteq P \text{ and } Q \cap A = \emptyset)$

A B M A B M

For every compact null set P there exists a comeager set G such that G + P is still null.

Э.

Proof of the Theorem.

If $|L + S| < \mathfrak{c}$ then there is nothing to prove. Otherwise $|L| = |S| = \mathfrak{c}$ by regularity of \mathfrak{c} . Let P be an arbitrary chosen perfect set P (wlog-meager, null and compact) and let G be as in the previous Lemma. Let's denote N = -G and $M = -N^c$. Then $P \subseteq (M + N)^c$. We will show that also $(L + S)^c$ also contains some perfect set.

伺 と く ヨ と く ヨ と

Proof of the Theorem.

If $|L + S| < \mathfrak{c}$ then there is nothing to prove. Otherwise $|L| = |S| = \mathfrak{c}$ by regularity of \mathfrak{c} . Let P be an arbitrary chosen perfect set P (wlog-meager, null and compact) and let G be as in the previous Lemma. Let's denote N = -G and $M = -N^c$. Then $P \subseteq (M + N)^c$. We will show that also $(L + S)^c$ also contains some perfect set.

$$L + S = ((L \cap N) + (S \cap M)) \cup ((L \cap N) + (S \cap M^c)) \cup \cup ((L \cap N^c) + (S \cap M)) \cup ((L \cap N^c) + (S \cap M^c)))$$

•
$$(L \cap N) + (S \cap M) \subseteq M + N;$$

•
$$(L \cap N) + (S \cap M^c)$$
 is a Luzin set;

- $(L \cap N^c) + (S \cap M)$ is a Sierpiński set;
- $|(L \cap N^c) + (S \cap M^c)| < \mathfrak{c}.$

→ ∃ → → ∃ →

Proof of the Theorem.

If $|L + S| < \mathfrak{c}$ then there is nothing to prove. Otherwise $|L| = |S| = \mathfrak{c}$ by regularity of \mathfrak{c} . Let P be an arbitrary chosen perfect set P (wlog-meager, null and compact) and let G be as in the previous Lemma. Let's denote N = -G and $M = -N^c$. Then $P \subseteq (M + N)^c$. We will show that also $(L + S)^c$ also contains some perfect set.

$$L + S = ((L \cap N) + (S \cap M)) \cup ((L \cap N) + (S \cap M^c)) \cup \cup ((L \cap N^c) + (S \cap M)) \cup ((L \cap N^c) + (S \cap M^c)))$$

- $(L \cap N) + (S \cap M) \subseteq M + N;$
- $(L \cap N) + (S \cap M^c)$ is a Luzin set;
- $(L \cap N^c) + (S \cap M)$ is a Sierpiński set;
- $|(L \cap N^c) + (S \cap M^c)| < \mathfrak{c}.$

It follows that all of these sets have intersection with P of power lesser than c, so there exists perfect set $P' \subseteq P$ such that $P' \subseteq (L+S)^c$. Thus L+S belongs to s_0 .

____ ▶

Remark

The assumption on regularity of c cannot be omitted.

白 ト ・ ヨ ト ・ ヨ ト …

Thank you for your attention!

< 注 → < 注 →

э

Bibliography

- Babinkostova L., Sheepers M. Products and selection principles, Topology Proceedings, Vol. 31 (2007), 431-443.
- Bartoszewicz A., Filipczak M., Natkaniec T., On Smital properties, Topology and its Applications (2011), Vol. 158, 2066-2075.
- Michalski M., Żeberski Sz., Some properties of *I*-Luzin sets, Topology and its Applications (2015), Vol. 189, 122-135.

* E > * E >